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Abstract—This tutorial paper overviews recent developments in
optimization-based approaches for resource allocation problems
in wireless systems. We begin by overviewing important results in
the area of opportunistic (channel-aware) scheduling for cellular
(single-hop) networks, where easily implementable myopic policies
are shown to optimize system performance. We then describe key
lessons learned and the main obstacles in extending the work
to general resource allocation problems for multihop wireless
networks. Towards this end, we show that a clean-slate optimiza-
tion-based approach to the multihop resource allocation problem
naturally results in a “loosely coupled” cross-layer solution. That
is, the algorithms obtained map to different layers [transport,
network, and medium access control/physical (MAC/PHY)] of the
protocol stack, and are coupled through a limited amount of infor-
mation being passed back and forth. It turns out that the optimal
scheduling component at the MAC layer is very complex, and thus
needs simpler (potentially imperfect) distributed solutions. We
demonstrate how to use imperfect scheduling in the cross-layer
framework and describe recently developed distributed algo-
rithms along these lines. We conclude by describing a set of open
research problems.

Index Terms—Cellular networks, congestion control, cross-layer
optimization, imperfect schedule, multihop wireless networks, op-
portunistic scheduling.

I. INTRODUCTION

OPTIMIZATION-based approaches have been extensively
used over the past several years to study resource allo-

cation problems in communication networks. For example,
Internet congestion control can be viewed as distributed primal
or dual solutions to a convex optimization problem that max-
imizes the aggregate system performance (or utility). Such
approaches have resulted in a deep understanding of the ubiq-
uitous transmission control protocol (TCP) and resulted in
improved solutions for congestion control [1]–[6].

The key question is whether such approaches can be applied
to emerging multihop wireless networks to enable a clean-slate
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design of the protocol stack.1 Indeed there are unique challenges
in the wireless context that do not allow a direct application
of such techniques from the Internet setting. In particular, the
wireless medium is an inherently multiaccess medium where
the transmissions of users interfere with each other and where
the channel capacity is time-varying (due to user mobility,
multipath, and shadowing). This causes interdependencies
across users and network layers that are simply not present
in their wireline counterparts. In spite of these difficulties,
there have been significant recent advances that demonstrate
that wireless resources across multiple layers (such as time,
frequency, power, link data rates, and end-user data rates),
can be incorporated into a unified optimization framework.
Interestingly, as will be described in detail in Section III, the
solution of such an optimization framework will itself exhibit
a layered structure with only a limited degree of cross-layer
coupling.

We will illustrate the use of such an optimization approach
for two classes of cross-layer problems, namely, the oppor-
tunistic scheduling problem in cellular (or access-point-based
single-hop networks), and the joint congestion-control and
scheduling problem in multihop wireless networks. We will
see that convex programming is an important tool for this
optimization approach; in particular, Lagrange duality is a
key tool in decomposing the otherwise complex optimization
problem into easily solvable components. However, we will
also see that convex programming is often not enough. In fact,
unlike their wireline counterparts, the essential features of
many wireless cross-layer control problems are not convex.
For example, due to interference, wireless networks typically
require sophisticated “scheduling” mechanisms to carefully
select only a subset of links to be activated at each time. In
wireless networks, the capacity of each link depends on the
signal and interference levels, and thus depends on the power
and transmission schedule at other links. This relationship
between the link capacity, power assignment, and the transmis-
sion schedule is typically nonconvex. Therefore, the scheduling
component needs to solve a difficult nonconvex problem, and
usually becomes the bottleneck of the entire solution.

These inherent nonconvex features require that advanced
techniques in addition to convex programming be used to

1The notion of a clean-slate design becomes especially attractive for multihop
wireless networks, where the burdens of legacy systems are far less than for the
Internet.
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satisfactorily solve the cross-layer control problem in wireless
networks. In this tutorial, we will see a few examples where
tools from convex programming, combinatorial optimiza-
tion, stochastic stability, graph theory, large deviations, and
heavy-traffic limits are used to obtain realistic and efficient
solutions to the cross-layer control problem.

We acknowledge that cross-layer optimization has become a
very active research area in the last few years. A comprehensive
survey would be difficult due to the space constraints in this
special issue. Hence, this tutorial is by no means an exhaustive
survey of all subjects in cross-layer optimization. Rather, our
focus is to provide the readers with a sketch of the main issues,
challenges, and techniques in this area, and also identify the
main open problems to the community. For another survey in
this area see [7].

The rest of this tutorial is organized as follows. Section II will
begin with an exposition of the important problem of scheduling
in cellular networks. Here, the emphasis is on incorporating
physical-layer channel information into the scheduling decision.
In Section III, we investigate the joint congestion-control and
scheduling problem in multihop wireless networks. The general
formulation provided in Section III elegantly decomposes the
cross-layer problem into a congestion control component and a
scheduling component. However, due to nonconvexity, the per-
fect scheduling component is usually very complex and diffi-
cult to implement in real networks. One approach to address this
complexity is to use simpler (and potentially distributed) imper-
fect scheduling components in the cross-layer solution. How-
ever, the impact of these imperfect scheduling policies on the
overall solution must be carefully studied. This is the subject of
Section IV. In Section V, we will describe recent developments
in obtaining imperfect distributed scheduling policies with prov-
ably achievable throughput bounds. We then conclude with a set
of open problems.

II. OPPORTUNISTIC SCHEDULING FOR CELLULAR

WIRELESS NETWORKS

In this section, we focus on the opportunistic scheduling
problem in cellular networks (the results also apply to ac-
cess-point-based single-hop wireless networks). Over the last
few years, this multiuser scheduling problem has received
significant attention in both academia and industry. These
scheduling schemes have been motivated by the unique fea-
tures in wireless networks: scarce resources, mobile users,
interference from other users in the network, and time-varying
channel conditions (due to fading and mobility). Hence, good
scheduling schemes in wireless networks should opportunis-
tically seek to exploit channel conditions to achieve higher
network performance. For example, consider a cellular net-
work that consists of a base station and users. Further,
assume a time-slotted system and downlink communications,
i.e., from the base station to the users (receivers). Then, the
base station can determine which user(s) to transmit to, based
on the channel conditions. The idea is that transmissions to
receivers with favorable channel conditions [e.g., with higher

signal-to-interference-and-noise ratio (SINR)] allows the base
station to transmit at a higher rate (using adaptive modulation
and coding schemes) for a given target bit-error rate. Thus,
the base station can opportunistically exploit the channel
conditions to achieve higher network performance. It should
be noted here that the idea of exploiting multiuser diversity
is in contrast to traditional methods (e.g., spread spectrum,
repetitive coding, and power averaging, etc.), where the goal
is to smooth out channel variability rather than to exploit it.
Opportunistic scheduling achieves multiuser diversity gains
because when users experiencing good channels are selected, it
enables the system to potentially operate close to its peak rather
than average performance.

In [8], under an additive white Gaussian noise (AWGN)
model, it has been shown that the sum capacity2 of a wireless
system is maximized when only one user is selected to transmit
at any given time. This result can be shown for either uplink
or downlink assuming complete channel information at both
the receiver and the transmitter. The user with the best channel
condition is chosen for transmission. However, in a networking
context, the difficulty with such a solution is that while it
maximizes the overall throughput, it could result in significant
unfairness among the users. For example, under such a scheme
users that are close to the base station may always be favored
over those that are further away, resulting in potentially poor
performance for certain users in the system. Such an approach
is especially troubling for high-data-rate wireless users that
may have stringent quality-of-service (QoS) requirements.

In order to address the above concerns, there have been sev-
eral approaches to ensure fairness/QoS in a wireless context.
For simplicity of presentation, we will focus on the downlink,
i.e., base station to user communication. We will overview op-
portunistic scheduling solutions that have been derived for both
infinite- and finite-backlogged cases.

A. Infinite-Backlog Case

The infinite-backlog case is often studied in communication
systems to evaluate protocols and study their maximum achiev-
able performance. It is also simple and results in a tractable
solution that provides important insights. The objective in our
context is to find a feasible scheduling policy that maximizes
the overall system performance for given fairness/QoS require-
ments. A policy maps a vector
to , which is the index of the user selected for transmis-
sion. Here, is the data rate transmitted to user if it is se-
lected for transmission, is the utility function of user , and

measures the value or benefit to user of the receiving
data rate . Note that is a function of the channel condition
and the coding and modulation scheme used. There have been
many scheduling schemes that address this problem [9]–[13].
Interestingly, most of these approaches result in an optimal so-
lution that can be expressed in the form of simple myopic index
policies given by

(1)

2The maximum total throughput that can be achieved in the system.
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where and are constants and can be viewed as Lagrange
multipliers. For example, consider the following problem
studied in [12], [13]:

(2)

where is the set of all stationary scheduling policies, and is
the minimum fraction of time-slots assigned to user (i.e., fair-
ness in time). Clearly, this is a nonlinear optimization problem.
However, it can be readily shown that policy (1) with
and some appropriate choice of is optimal (i.e., maximizes
the expected system utility). The optimal policy (1) would be
executed at each time slot and can be obtained through a sto-
chastic approximation algorithm, as shown in [13]. Similarly,
instead of temporal fairness, let us now consider other forms of
QoS.

• Fairness in utility: Each user receives at least a fraction
of the aggregate utility value [11], [13].

• Minimum data rate requirement: Each user receives a min-
imum data rate of bps [13].

• Proportional fairness: Here, the objective is to achieve a
solution that is proportionally fair, i.e., increasing the mean
throughput of one user from the optimal level by results
in a cumulative percentage decrease by greater than of
the mean throughput of other users [14]. It turns out that
such a solution is achieved when the optimization problem
is to maximize the sum of the logarithms of the expected
rates (or the product of the expected rates), i.e.,

In each of these cases it can be shown that the optimal so-
lution will correspond to (1), now with . Thus, these
results tell us that simple myopic index scheduling poli-
cies can be used to opportunistically improve the system
performance in wireless networks.

B. Stability of Opportunistic Scheduling Schemes

The problem that we have described so far assumed an in-
finitely backlogged system with the objective of maximizing
the aggregate system utility under QoS/fairness constraints. An-
other important class of problems deals with the development
of opportunistic scheduling schemes with the intention of ac-
commodating the maximum possible offered load on the system
without violating stability or other QoS constraints. Here, the
problem moves from the maximization of utility to stochastic
stability. The work has largely been motivated by the seminal
work on throughput-optimal3 scheduling [15]. This work shows
that scheduling schemes that maximize the queue-weighted sum

3A scheduling scheme is said to be throughput optimal if it stabilizes the
system whenever any other feasible scheduler can stabilize the system.

of the rates are throughput optimal. For the case of cellular net-
works, the scheduling scheme is of the following form:

(3)

where is the queue length of user , and is again the data rate
transmitted to user . While this scheduling solution does not
account for fairness, it provides the important insight that queue-
length information is critical in developing throughput optimal
scheduling schemes. This idea has been further developed into
a general class of queue-length-based (or, equivalently, delay-
based) opportunistic scheduling schemes that focus on stability
and throughput optimality [16]–[20].

For example, in [16], [17], simple index scheduling policies
of the following form are shown to be throughput optimal:

(4)

where is a constant, is the head-of-the-line packet delay at
queue , and as before is the data rate of user . In [17] and
[18], a related delay-based index policy that provides exponen-
tial weight to the delay (the so-called exponential rule) is shown
to be throughput optimal.

Throughput optimal scheduling schemes have also been
derived in [21], where the authors also incorporate flow-level
dynamics into their model. In particular, the authors model users
arriving to the system with a random amount of workload (e.g.,
a file size), and departing when this workload has been trans-
mitted. Recently, in [22] and [23], the authors have attempted
to characterize the impact of different forms of scheduling on
stability and QoS using techniques from large-deviation and
heavy traffic limits. The key results from these works empha-
size the importance of queue-length-based (QLB) scheduling
[e.g., in the form of (3) and (4)] for finite-backlogged systems
when there are delay constraints. Under certain conditions,
it can be shown that, when there are delay constraints, the
network throughput of QLB policies is larger than policies for
which queue-length information is not taken into account, e.g.,
(1). Moreover, for a given delay violation constraint, when
the number of users in the system increases, the total network
throughput under policy (1) initially increases, and then even-
tually decreases to zero, but not so under the QLB policy. This
should not be entirely surprising since index policies of the
form (1) are agnostic to the delays incurred for different users
and may not serve users whose queues are building up fast
enough to remain within a delay violation probability.

C. Limitations and Lessons Learned

Thus far, we have focused on opportunistic scheduling solu-
tions for cellular systems. For such systems, one can often find
simple myopic index policies that are optimal and easy to imple-
ment. However, scheduling cannot address the problem of en-
suring that the system is operating in a stable or feasible regime.
Hence, while opportunistic scheduling expands the capacity re-
gion over its nonopportunistic counterparts, it may be difficult
to utilize this gain if we are unable to operate the system close
to the boundary of the capacity region. For example, if one were
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to make a conservative estimate of the boundary of the capacity
region, and traffic were injected into the system based on this
conservative estimate, the opportunistic gains may never be real-
ized. Thus, it is imperative that one solves the problem of deter-
mining the rates to be injected into the network (i.e., congestion
control to be discussed in Section III) jointly with which user(s)
to be scheduled for transmission (i.e., opportunistic scheduling).

Further, when we move from cellular to multihop wireless
systems, we encounter other difficulties that need to be ad-
dressed. For example, how should one determine the end-to-end
data rates for the users? When should a given link be activated
in the network? What should be the forwarding rate of each
link along with its power allocation, coding and modulation
schemes? How can one ensure that the rate provided by the
links is enough to support the end-to-end rate of all users? The
potential state space in a moderately sized multihop network
could be quite large, so can one develop low-complexity solu-
tions to these problems? Perhaps, most importantly, how does
one go about developing efficient distributed solutions to these
problems?

In the next few sections, we will describe some of the recent
research developments that have taken place in addressing the
above problems.

III. CROSS-LAYER CONGESTION CONTROL AND SCHEDULING

FOR MULTIHOP WIRELESS NETWORKS

In this section, we study the following problem in multihop
wireless networks: how does one jointly choose the end-to-end
data rate of each user and choose the schedule for each link?
(Here, as in Section II, we will use the term schedule to refer to
the joint allocation of resources at medium access control/phys-
ical (MAC/PHY) layers, which include modulation, coding,
power assignment and link schedules, etc.) As we will see, the
solution to this problem is obtained by choosing an appropriate
congestion control algorithm to regulate the user data rates
and a scheduling policy which is a modification of the QLB
scheduling algorithm in the previous section. While congestion
control has been studied extensively for wireline networks
[1]–[6], these results cannot be applied directly to multihop
wireless networks because the link capacity in multihop wire-
less networks varies and depends on the scheduling policies
at the underlying layers. There have been attempts to solve
this cross-layer control problem using a “layered” approach
[24]–[27]. The approach is to find a feasible rate region that has
a simpler set of constraints similar to that of wireline networks,
and then develop congestion controllers that compute the rate
allocation within this simpler rate region. Unfortunately, for
general network settings, it is not always possible to find such
a simpler rate region. Further, because the rate region reduces
the set of feasible rates that congestion control can utilize, the
layered approach results in a conservative rate allocation.

The general cross-layer solutions for jointly optimizing con-
gestion control and scheduling have recently been developed by
a number of researchers [20], [28]–[34]. In this section, we will
review two types of formulations and solutions that can poten-
tially be used for online implementation.

A. The Model

We consider a multihop wireless network with nodes. Let
denote the set of links (i.e., node pairs) such that the

transmission from node to node is allowed. Due to the shared
nature of the wireless media, the data rate of a link de-
pends not only on the power assigned to the link, but also
on the interference due to the power assignments on other links.
(In this paper, we often refer to as the power assignment,
however, the same formulation would clearly apply if rep-
resents other types of resource control decisions at link ,
e.g., activation/inactivation, or a random-access attempt-proba-
bility.) Let denote the power assignments
and let denote the data rates. We assume
that , i.e., the data rates are completely determined by
the global power assignment. (One can also extend the model
to incorporate channel variations, see Section III-D.) The func-
tion is called the rate-power function of the system. There
may be constraints on the feasible power assignment. For ex-
ample, if each node has a total power constraint , then

. Let denote the set of feasible power

assignments, and let . We assume that
, the convex hull of , is closed and bounded.

There are users and each user is associated with a source
node and a destination node . Let be the rate with which
data is sent from to , over possibly multiple paths and mul-
tiple hops. We assume that is bounded in . Each user
is associated with a utility function , which reflects the
“utility” to the user when it can transmit at data rate . We as-
sume that is strictly concave, nondecreasing and continu-
ously differentiable on . The use of such utility functions
is common in the congestion control literature to model fairness,
since with different utility functions the rate allocations that
maximize the total system utility can be mapped to a range of
fairness objectives [35], [36].

We assume that time is divided into slots. At each time slot,
the scheduling policy will select a power assignment vector
(or, equivalently, ), and select data to be forwarded
on each link. Given a user rate vector ,
we say that a system is stable under a scheduling policy if the
queue length at each node remains finite. We can then formulate
the following joint congestion-control and scheduling problem.

• The Congestion-Control Problem: Find the user rate
vector that maximizes the sum of the utilities of all users

subject to the constraint that the system is
stable under some scheduling policy.

• The Scheduling Problem: For any user rate vector
picked by the congestion-control problem, find a sched-
uling policy that stabilizes the system.

Define the capacity region of the system as the largest set
of rate vectors such that for any , there exists some
scheduling policy that can stabilize the network under the of-
fered-load . Hence, the congestion control part of the problem
is simply

(5)



1456 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 8, AUGUST 2006

In the sequel, we will review two different ways of stating the
capacity region , which then lead to different solutions.

B. The Node-Centric Formulation

In the node-centric formulation, a user rate vector is in the
capacity region if and only if there exists a link rate vector

associated with each destination node , and the vector
satisfies [15], [37]

(6)

where can be interpreted as the rate on link that is
allocated for data towards destination . These set of equations
simply represent a balance of incoming rates and outgoing rates
at each node. The convex-hull operator is due to a standard time-
averaging argument [15], [37]–[39].

The Solution: Although the rate-power function is gen-
erally a nonconvex function, the convex-hull operator in fact
makes the capacity region a convex set. Hence, the problem
(5) has a dual such that there is no duality gap [28]. Associating
a Lagrange multiplier for each constraint in (6), we can then
obtain the following solution [28], [32], [33].

• The data rates of the users are determined by

(7)

• The schedule is determined by first solving the following
subproblem:

(8)

Each link then picks the corresponding power assignment
that achieves , and computes the vectors as fol-
lows: For each link , let ,
and let if and ,
otherwise.

• The Lagrange multipliers are updated by

(9)

where , is a sequence of positive step-sizes.
The physical interpretation of this set of equations is as fol-

lows. The Lagrange multiplier can be viewed as a scalar mul-
tiple of the queue length at node for packets destined to node .
Equation (7) corresponds to the congestion control component

for determining the data rate of each user. Equation (8) corre-
sponds to the scheduling component. The network first com-
putes the power assignment that corresponds to . Then,
each link will route data destined to the destination that cor-
responds to the largest differential backlog . Note that
given , the congestion control decision and the scheduling de-
cision are made independently. Finally, (9) corresponds to the
evolution of the queue length at each node.

One can then show the following convergence result [28].
Proposition 1: If

then as , where is the unique optimal
solution to problem (5).

Alternatively, if does not approach zero, then as long as it
is small, one can still show that will converge to a small
neighborhood around . Further, all queues will remain finite,
and hence the schedules also stabilize the network.

C. Link-Centric Formulation

The link-centric formulation differs from the node-centric
formulation in that the capacity constraints are stated as balance
equations for each link. For simplicity, we focus on the case
where the routes for each user are predetermined. Let de-
note the routing matrix, where if traffic of user passes
through link , , otherwise. Then, an end-to-end
user rate vector belongs to the capacity region if and only
if there exists a link rate-vector such that

(10)

The Solution: The capacity region is a convex set, as in the
case of the node-centric formulation. Associating a Lagrange
multiplier for each constraint in (10), we can obtain the fol-
lowing solution [28], [29].

• The data rates of the users are determined by

(11)

• The schedule is determined by solving the following
subproblem:

(12)

Each link then picks the corresponding power assign-
ment that achieves .

• The Lagrange multipliers are updated by

(13)

where , is a sequence of positive step-sizes.
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The above solution has a similar physical interpretation to the
node-centric solution. Further, a convergence result similar to
Proposition 1 can be shown [28], [29]. In the case of cellular
networks, the node and link-centric formulations are identical,
a case which has been considered in [30].

D. Node-Centric Versus Link-Centric Formulation

We make the following remarks.
Decomposition: Given , we have decomposed the problem

into a congestion control component [(7) or (11)], and a sched-
uling component [(8) or (12)], each of which can be solved inde-
pendently given the Lagrange multipliers or . However, the
scheduling component of the node-centric formulation incorpo-
rates the routing functionality, while the scheduling component
of the link-centric formulation does not. Hence, different formu-
lations can result into decomposition between different layering
boundaries.

Feedback: In both formulations, given the Lagrange mul-
tipliers, each user then solves its own utility maximization
problem (7) or (11) independently. These Lagrange multipliers
can be interpreted as the implicit costs for the resources. How-
ever, note that in the node-centric formulation, the congestion
control component of user reacts to the implicit cost
at the source node , while in the link-centric formulation,
the congestion control component reacts to the sum of the
implicit costs along the path of user . Thus, the node-centric
formulation does not require feedback from inside the network,
while the link-centric formulation does.

Queues: In both formulations, the Lagrange multipliers may
be interpreted as a scalar multiple of the queue length. In the
link-centric formulation, each link only needs to maintain one

. In the node-centric formulation, each node needs to main-
tain multiple , one per each destination . Thus, the node-cen-
tric formulation has more overhead. On the other hand, in the
node-centric formulation, (9) correctly models the way packets
move from one node to the other. In contrast, in the link centric
formulation, the Lagrange multiplier will only correspond to
the real queue length at link under the implicit assumption
that the data rate of each user is applied simultaneously to
all links along its path.

Channel variations: Both formulations can be generalized
to the case with channel variations (e.g., due to fading and/or
mobility of the nodes), in which case only the scheduling
component needs to be changed [30], [33], [40].

As a final note, the node-centric formulation can also be gen-
eralized to the case with predetermined routing, and the link-
centric formulation can also be generalized to the case with mul-
tipath routing [28]. Primal-dual solutions to this problem are
studied in [20] and [31].

E. Cases Where the Perfect Scheduling Components is
Solvable

The scheduling component (8) or (12) is usually difficult to
solve because the rate power function in many wireless set-
tings is not concave. Note that the Lagrange multipliers change
every time slot. Hence, a different optimal schedule needs to be

computed at every time slot. Thus, the complexity of the sched-
uling component is the main bottleneck for the entire solution
[41].

A few cases have been studied where computing the exact
optimal schedule is of polynomial-time complexity.

• Cellular networks or access-point-based single-hop wire-
less networks where at each time only one node can com-
municate with the base station or access point [30].

• The so-called node-exclusive interference model (i.e., the
data rate of each link is fixed at , and the only wireless
constraint is that each node can only communicate with
one other node at any time), where the optimal schedule
corresponds to a maximum-weighted-matching problem
[28], [29], [42]. This model is an accurate representation
for Bluetooth-like networks and a reasonable approxima-
tion to frequency-hopping code-division multiple-access
(FH-CDMA) systems.

• When the data rate of a link is a concave function of its
own power assignment [43] (which implies no interference
between links).

Further, in the so-called low-SINR case when the data rate
of a link is a linear function of its SINR, the perfect schedule
(i.e., power assignment) satisfies the property that each node
either does not transmit at all, or transmits at the maximum
power to only one other node. This property significantly re-
duces the search space for optimal power assignments [28], [38].
However, the complexity remains exponential in the number of
nodes.

For certain special rate-power functions, although the func-
tion is originally not a concave function of , it may
become a concave function after some change of variables.
Such cases include: 1) the so-called high-SINR case where the
rate of each link is a logarithmic function of its SINR
[44], [45]; 2) the low-SINR case [46]; and 3) single-channel
Aloha networks [47]–[49]. With these rate-power functions,
rather than solving the problem (5), several researchers instead
study the following problem [44]–[49] (the link-centric formu-
lation is used here):

(14)

Note the omission of the convex-hull operator compared with
(10). Recall that . If is not
concave, then is not a convex set. However, for the spe-
cial cases listed above, by some change of variables ,

, it is possible to rewrite the problem (14) as a convex
program of and [sometimes requiring additional assump-
tions on the utility function ]. One can then use standard
convex programming techniques to solve problem (14). While
such transformations to convex programs typically make the
problem much easier to solve, one should be careful about this
approach in general since it may incur a loss of capacity due to
the omission of the convex-hull operator in (14). (The omission
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of the convex hull does not allow time-interleaving of sched-
ules.) Finally, the above transformation approach critically de-
pends on the rate-power function used, and may not be appli-
cable for other interference models.

IV. USING IMPERFECT SCHEDULING IN THE

CROSS-LAYER SOLUTION

Apparently, the complexity of the scheduling component
has become the main bottleneck for the cross-layer solution.
It would be even harder to come up with distributed solutions
that are suitable for large networks. A natural question is then:
what if we relax the optimality requirement of the scheduling
component [(8) or (12)], and let the scheduling component
only compute an suboptimal schedule at each time. As we
will see in Section V, this relaxation opens up a large class of
new scheduling solutions that are simple, provably efficient,
and can be implemented in a distributed fashion. However,
we first need to understand how to use these imperfect sched-
uling policies in the cross-layer solution. Note that the perfect
schedules computed by the scheduling component (8) and (12)
are, in fact, the throughput-optimal schedules that achieve the
largest capacity region (see Section II-B, and [15], [37], and
[38]). An imperfect scheduling policy will typically achieve
a smaller capacity region. We next review two approaches to
use such imperfect scheduling policies for solving the joint
congestion-control and scheduling problem.

A. The Layered Approach

If the imperfect scheduling policy can ensure a rate region
, and can be described by a set of simple linear con-

straints, then we can use the following layered approach. We
can compute the end-to-end user rate vector by solving the
congestion control problem (5) with the constraints replaced by

. Since now the “optimal” rate allocation lies in , the im-
perfect scheduling policy will then be able to support the com-
puted end-to-end user rate-vector.

In [50], such a layered approach is applied to the node-exclu-
sive interference model. Under this model, a simple scheduling
policy called Maximal Matching can guarantee the following
capacity region (see Section V-A): the user rate-vector be-
longs to if and only if

(15)
It will be shown in Section V-A that . Hence, the loss
of efficiency is at most 1/2. The constraint in is essentially
of the same form as in wireline networks. We can then associate
Lagrange multipliers for each constraint in (15), and solve the
optimal user rate-vector in that maximizes the total system
utility. The resulting user rate-vector can also be stabilized by
the Maximal Matching policy.

B. The Cross-Layered Approach

In the cross-layered approach, we still use the cross-layer so-
lutions in Section III, except that we replace the scheduling com-

ponent (8) or (12) by an imperfect scheduling policy. Hence, the
dynamics of the congestion control component and the sched-
uling component are still coupled through the implicit costs (i.e.,
Lagrange multipliers). Note that once the scheduling compo-
nent of the optimal solution is replaced by an imperfect sched-
uling policy, the dynamics of the system can become much more
complicated. The concern here is that, due to the interaction be-
tween the two components, the system may get stuck at a local
optimum which may be globally suboptimal and quite ineffi-
cient. The following questions need to be addressed: (a) Does
the system still converge to some user rate-vector? (b) Is the re-
sulting user rate-vector still fair and efficient?

These questions are addressed in [29] for a class of imperfect
scheduling policies called -policies. An -poicy will com-
pute, at each time , a schedule that satisfies

(16)

where is a constant in (0,1]. It is known that an -policy
can guarantee a capacity region of at least . Thus, the pa-
rameter can be viewed as a tuning parameter indicating the
degree of imprecision of the imperfect schedule. A number of
low-complexity scheduling algorithms fall into this class. For
example, under the node-exclusive interference model, simple
Greedy Maximal Matching policy [29], [51] is an -policy
with .

In [29], the fairness and efficiency of a cross-layer solution
using an -policy are studied. Two types of results are reported.

• In the static case where the user population is fixed,
[29] shows that, if the cross-layer solution with an

-policy converges to some rate-allocation, the rate-al-
location satisfies a weak fairness property. In particular,
if the utility function is logarithmic (i.e., of the form

, where is the weight of user ),
then the convergent point will satisfy

(17)

where is the optimal rate-allocation. In other words, the
rate of each user is unlikely to be too unfair compared with

. However, in general, it is impossible to establish the
convergence of the rate allocation to any particular point.

• In the dynamic case, i.e., in which the users enter and
leave the system according to a stochastic process, [29]
establishes the lower bound on the stability region of the
system employing the cross-layer solution with imperfect
scheduling. In particular, assuming that users of class ar-
rive according to a Poisson process with rate and that
each user brings with it a file for transfer whose size is
exponentially distributed with mean , we can define

as the load brought by users of class . Let
. Then, [29] shows that the stability region

of the system (i.e., the set of offered-load vectors under
which the system remains stable) is at least when we
use the cross-layer solution with an -policy.
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The above results tell us that although only a weak fairness
property can be shown for the static case, it appears to be suffi-
cient to ensure a reasonable stability region. Thus, the potential
local suboptima that could occur in the static case appears to
be inconsequential when the arrivals and departures of the users
are taken into account.

Finally, we would like to point out that not all imperfect
scheduling policies are of the -type. How to address the
cross-layer impact of these other imperfect scheduling policies
is still an open problem.

V. DISTRIBUTED SCHEDULING ALGORITHMS

We next review a class of imperfect scheduling algorithms.
We are interested in these algorithms because they are very
simple and can be implemented in a distributed fashion. We will
focus on showing that these algorithms can also guarantee a cer-
tain fraction of the overall capacity region. These scheduling
algorithms can then be used to solve the joint congestion-con-
trol and scheduling problem, either via the layered approach in
Section IV-A, or via the cross-layer approach in Section IV-B
[29].

We consider a fairly general interference model for the wire-
less network. There are links operating in a discrete time-
slotted manner. For ease of exposition, in this section we will use

to index each link. Each link can send packets
per time slot, provided that there are no other interfering links
activated at the same time; otherwise, if two links that interfere
with each other are activated at the same time, none of the links
can send any packets. Associated with each link is a set of other
links which interfere with the given link. The only assumption
that we make on the interference relationship is that it is sym-
metric, i.e., if link interferes with link , then also interferes
with . Specifically, let be the interference set associated with
link , then: (a) , and (b) if , then .

We are interested in maximal policies that select links for
scheduling such that the interference constraints are satisfied.
The policies are maximal in the sense that the schedule can be
chosen in the following fashion: start with any link in the net-
work and add links to the schedule, one link at a time, subject to
interference constraints. If the scheduler proceeds to implement
this algorithm until no more links can be added to the schedule,
then it is called maximal. Such maximal policies require no sig-
nificant computation, but may require an overhead for imple-
mentation in a decentralized manner as we will discuss later.

It turns out that for the purpose of proving capacity regions,
we can focus on the single-hop case, i.e., by assuming that each
user’s route consists of a link. Then, under certain assump-
tions, these results can be extended to the case with multihop
routes.4 Associated with each link is a stochastic arrival process

, where is the number of packet arrivals in slot
to link . We assume that the arrival processes are stationary

and let . The number of departures from link
at time is denoted by , and is assumed to be

less than or equal to packets. Let be the number of
packets at link at the beginning of time slot . Let be
an indicator function indicating whether link is scheduled

4For example, if we assume that the traffic on a route arrives at all the links
on a route instantaneously, then it is effectively the same problem as one where
the routes consist of a single hop. Alternatively, it has been shown in [52] that
if one uses traffic reshaping at each link, the stability conditions for single-hop
routes also apply to multihop routes.

in time slot or not. We make the assumption that link is
eligible for scheduling only if it has at least waiting packets.
Thus, . We assume that the sequence of events
in each time slot is as follows: 1) schedule consistent with the
interference constraint is chosen; 2) departures occur next; and
3) arrivals occur last.

We now formally define a maximal scheduling policy. A
policy is said to be a maximal policy if the departures under
this policy satisfy the following constraint: if , then

. This ensures that when a link has at least
packets, either the link is scheduled or if it is not scheduled,

then the reason that it is not scheduled is that another link from
its interference set is scheduled. The above policy is a natural
extension of the maximal schedules considered for high-speed
switches in [51], [53], and [54] and, for Bluetooth-like wireless
networks, in [29].

The simplest model to consider is one where

are independent identically distributed (i.i.d.) across . In
other words, the arrival process is i.i.d. across time slots, but
may be dependent across links. The extension to more general
Markovian arrival processes is straightforward. Define the state
of the system to be

where the dynamics of are given by

Assume that is chosen according to some probability
distribution given , i.e., is given.
Thus, is a countable-state-space Markov chain. Note
that can be arbitrary. In particular,
could be any sequence of schedules consistent with the interfer-
ence constraints. In a real network, the maximal schedule may
be computed by a random access protocol. In this case, it may
be reasonable to assume that all feasible maximal schedules
are equally likely at each time instant. However, the result
applies to more general models as well; in fact, it holds for
any rule used to choose the set of active links, as long as the
resulting schedule is a maximal schedule. The following result
was proved in [55] and [56].

Proposition 2: For any distributions , the
Markov chain is stable-in-the-mean, i.e.,

if

(18)

Remark: The condition in (18) can be used to form the region
(see Section IV-A). One may then use the layered approach

in Section IV-A to solve the joint congestion-control and sched-
uling problem.



1460 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 8, AUGUST 2006

A. Worst Case Loss in Throughput for Node-Exclusive
Interference Models

The simplest interference model, motivated by FH-CDMA
and Bluetooth networks, is one where the only constraint on a
node’s transceiver is that it cannot receive and transmit simul-
taneously. This is called the node-exclusive interference model.
In graph-theoretic terms, this means a valid schedule in such a
network can be represented as a matching. A matching is a col-
lection of links in the network such that no two edges have a
common node. If no two links chosen to be part of the schedule
share a common node, then it means that no node transmits or
receives simultaneously, thus satisfying the node-exclusive in-
terference model constraint. The maximal schedule mentioned
previously in this section can then be thought of as a maximal
matching. (A maximal matching is a matching to which no link
can be added without violating the matching property.) The spe-
cialization of the result in Proposition 2 to the node-exclusive
interference model was first obtained in [29] for a more gen-
eral traffic model where the number of users in the network was
also allowed to vary according to a stochastic process. In this
subsection, we discuss the loss in throughput due to maximal
matching schedules. In the rest of this section, we will assume
that .

Now, consider any link and its interference set . The inter-
ference set consists of all links that have a node in common
with link . A little thought shows that a maximum of two links
in can be scheduled: one link connected to each of the nodes
associated with . This observation immediately suggests that
any set of arrival rates that can be supported in the interference
set must satisfy

(19)

The above result follows from simple queueing-theoretic con-
siderations: the maximum number of packets that can be drained
from this interference set at any time instant is two, and thus the
arrival rate has to be less than 2 for stability. Earlier in this sec-
tion, we proved that any arrival rate such that
can be scheduled using a maximal schedule (i.e., a maximal
matching under the node-exclusive model). Thus, the maximum
loss in throughput under the node-exclusive interference model
is 1/2.

Under the node-exclusive model, the maximal matching
policy may also be viewed as an -policy with respect to a
system where the capacity constraint is given by (19). One may
then use the cross-layer approach of Section IV-B to construct
fully distributed solutions to the joint congestion-control and
scheduling problem. See [40] for details.

B. Worst Case Loss in Throughput for General Interference
Models

In the previous subsection, we showed that, under the node-
exclusive interference model, the worst case throughput loss
is bounded by a factor 1/2 independent of the topology of the
network. However, such a topology-independent result appears
to be difficult to obtain for general interference models. For
general interference models, suppose that be the maximum
number of links of that can be scheduled simultaneously.

Then, as before, an elementary queueing argument shows that
the set of stabilizable arrival rates should satisfy

Letting , we see that the set of stabilizable
arrival rates must satisfy

Comparing this to the sufficient condition for stability under
maximal schedules, we see that the throughput is reduced by
a factor of at most . In [57], it has been shown that the
above bound for throughput loss is tight for certain types of ar-
rival processes and topologies. However, the argument requires
that the arrival processes to the various links in the network are
correlated.

C. Implementation Considerations and a Constant-Overhead
Algorithm

Maximal schedules can be implemented in a distributed
fashion as follows. Suppose each node uses a small packet
to request a transmission to a neighboring node (such as a
request-to-transmit, or RTS, packet in 802.11). If the receiving
node has not already scheduled to transmit, and it has not
received RTS from some other node, it can respond with a
clear-to-send (CTS) packet, and the sending node and the
receiving node are then matched. Otherwise, if a CTS is not
received by the sending node, the sending node could then try
to connect to another node. At the end of this process, one
would have a maximal schedule. While this is a distributed
algorithm, it comes at the cost of a high overhead. Note that
it may take many RTS/CTS cycles for a maximal schedule to
be established, while the results of Proposition 2 assumes that
this process is instantaneous. Thus, there could be a further loss
in throughput beyond what the analysis indicates due to the
overhead.

The overhead due to the RTS/CTS implementation can be
reduced under some ideal time-synchronization assumptions.
Assume that a small portion of time at the beginning of each
time slot is allocated to compute the schedule. Suppose that this
control time slot has a duration . Then, at the beginning of
each control time slot, each backlogged link generates a uniform
random number in [0,T]. Note that each link generates a random
number; it is not sufficient for each node to generate a random
number. Each link then sends out an RTS at the time indicated
by its random number unless it has previously heard an RTS. In
this manner, all collisions are avoided and a maximal schedule is
found by time . If is small compared with the duration of the
entire time slot, then the overhead is small. While time synchro-
nization may be a reasonable assumption, it is unreasonable to
assume that the RTS can be sent in an arbitrarily small amount
of time. In reality, it takes some time to transmit and receive an
RTS. Thus, the control time slot duration has to be thought as
a finite number of discrete minislots. In particular, say such
minislots can be fitted into the time interval . Then, each node
has to pick a random number in . Since it is now
a discrete random variable, collisions can happen. To reduce the
probability of collisions, one may have to choose sufficiently
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large which may again lead to a significant overhead. In partic-
ular, the choice of will depend upon the number of nodes in
the network and thus, the solution is not scalable. These consid-
erations then motivate the question of whether there exists a con-
stant-overhead algorithm to implement a distributed schedule.
By contant-overhead, we mean the overhead is independent of
the network size or topology. Recently, it has been shown that
indeed a constant-overhead algorithm does exists provided that
we are willing to tolerate a further small reduction in throughput
beyond the loss in throughput dictated by the maximal schedule
[58]. The algorithm is similar in spirit to an algorithm suggested
earlier for switches [51].

VI. CONCLUSION AND OPEN PROBLEMS

In the previous sections, we have summarized the significant
progress in optimization-based cross-layer resource allocation
in wireless networks. In particular, we note that the formulation
can be viewed as an approach to clean-slate design for commu-
nication networks. A noteworthy feature of this approach is that
the algorithms obtained from this clean-slate design naturally
map to different layers of the protocol stack: congestion control
at the transport layer, routing at the network layer, and sched-
uling/power control at the MAC/PHY layer. A key difference
between existing network architectures and the optimization ap-
proach is that the optimization approach also clearly delineates
the interactions necessary between the various layers to achieve
optimal performance. While the progress in this area has been
substantial over the last few years, there are still several open
problems, especially in the area of multihop wireless networks,
where scalability becomes a critical issue.

Propagation Delays and Connection-Level Stability Anal-
ysis: While the focus of much of this tutorial is on resource
allocation in networks with a fixed number of users, we had
discussed connection arrivals and departures in the context of
imperfect schedules (in Section IV). For the case of perfect
schedules, it was proven in [59] that the class of joint conges-
tion-control/routing/MAC policies discussed in Section III is
throughput optimal when there are connection-level arrivals
and departures. However, it was assumed that there were no
propagation delays between the nodes in the network. While
this may be a reasonable assumption in small wireless net-
works, it is not a reasonable assumption when one considers
heterogeneous networks, where part of the network may be
a wired network such as the Internet. Thus, an open issue is
to prove the throughput optimality of the algorithms in the
presence of propagation delays.

Traffic Arriving at all Nodes on the Route Instantaneously:
In Section III, the node-centric formulation of the resource al-
location problem in multihop wireless networks was able to
model packets traversing the nodes in the network one at a time.
However, in the link-centric formulation, we have assumed that
routes were precomputed and a packet arrives at all the links on
its path simultaneously. We proved stability and convergence for
the link-centric solution under this assumption. It is well-known
in queueing-theoretic literature that queue-length stability when
packets are assumed to arrive at all nodes on a route simul-
taneously does not guarantee the stability of networks where
the packets have to traverse one node at a time [60], [61]. One
solution to this problem was suggested in [50] and [52] using
a policing device called a regulator to reshape traffic at each

node in the network. However, this solution requires the use of
per-flow queueing in the network. On the other hand, since the
networks in this paper are congestion-controlled and are unlike
the examples in [60] and [61], it is unclear that the type of insta-
bility exhibited in [60] and [61] apply to the models considered
in this paper. Resolving this question and proving stability in
general is an open problem.

Complexity Issues and Distributed Algorithms for General
Physical Interference Models: While the general resource
allocation framework in Sections III and IV allows for arbi-
trary physical layer model, the maximal schedules and other
distributed algorithms of Section V focused only on simple
collision models. While it is interesting to obtain algorithms
that achieve a guaranteed fraction of the maximum possible
throughput for these practical interference models of Section V,
it is also true that emerging networks have more sophisticated
mechanisms available to control interference, such as power
control and the use of multiple carriers. Designing algorithms
with guaranteed minimum throughput levels under general
interference models is indeed a challenging open problem.

Cross-Layer Design With Fairness: In Section IV, we
noted that there are two methods to make use of the re-
duced-throughput scheduling algorithms of Section V (such
as maximal schedules) along with the transport-layer conges-
tion-control algorithms. One way is to treat the congestion
signals as though they are emanating from an algorithm that
achieves full throughput. In this approach, which we called
the cross-layer approach, strict fairness is not guaranteed and
indeed the congestion control algorithm with a fixed number
of users may not converge. However, at the connection level,
the number of active users/connections in the system remains
stochastically bounded provided that the load imposed on the
system by connection arrivals and departures lies within the
guaranteed stability region. Further, the cross-layer approach is
typically able to exploit the excess bandwidth in the sense that
the actual stability region is usually much larger than the worst
case stability region guaranteed by the reduced-throughput
scheduling algorithm. A second approach is to impose the
minimum guaranteed throughput as a resource constraint
and use this constraint to generate congestion signals. This
approach, which we called the layered approach, guarantees
fairness in the reduced rate region but may not able to exploit
excess bandwidth. An interesting open question is whether
there exists a protocol that combines the desirable features of
the two algorithms, i.e., one that can guarantee the minimum
bandwidths dictated by the fair-shares in the reduced rate re-
gion, while being able to exploit any excess bandwidth beyond
the minimum guaranteed bandwidth.

Constant-Overhead/Low-Overhead Implementation: In
Section V-C, we briefly discussed the need for contention res-
olution protocols that assure a constant overhead independent
of network topology and size. One such constant-overhead
distributed scheduling algorithm was proposed in [58]. How-
ever, its guaranteed throughput is lower than the guaranteed
throughput of maximal schedules of Section V. Recently,
distributed algorithms that achieve full throughput have been
discussed in [62] and [63]. However, these algorithms require
significant overheads or require unacceptably large delays.
An open problem is to characterize the tradeoff between the
overhead required and the reduction in throughput, if any, due
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to the requirement of low overhead in the contention resolution
algorithm. The ultimate goal would be to develop low-overhead
distributed algorithms that achieve the maximum possible
throughput in the network.

Tightness of Throughput-Loss Bounds: All the results on
bounding the throughput loss for imperfect schedules are based
on worst-case analysis. In other words, all the results so far
only give lower bounds on the achievable throughput. However,
simulations in [29] suggest that the average throughput could
be much larger. An interesting open issue is to characterize the
average user-perceived throughput using imperfect schedules.

Nonconcave Utility Functions: Finally, all of the developed
results have assumed that the utility functions are concave
functions of the rate. These utility functions are appropriate
for highly elastic traffic, such as data traffic. However, for
other applications (e.g., voice or video), a more appropriate
characterization of the user utility would be via nonconcave
sigmoidal utility functions [64]–[66]. An open problem is to
develop solutions to the cross-layer resource allocation problem
in this setting.

REFERENCES

[1] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: Shadow prices, proportional fairness and stability,” J. Oper.
Res. Soc., vol. 49, pp. 237–252, 1998.

[2] H. Yaiche, R. Mazumdar, and C. Rosenberg, “A game theoretic frame-
work for bandwidth allocation and pricing in broadband networks,”
IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 667–678, Oct. 2000.

[3] S. H. Low and D. E. Lapsley, “Optimization flow control-I: Basic al-
gorithm and convergence,” IEEE/ACM Trans. Netw., vol. 7, no. 6, pp.
861–874, Dec. 1999.

[4] S. Kunniyur and R. Srikant, “End-to-end congestion control schemes:
Utility functions, random losses and ECN marks,” in Proc. IEEE IN-
FOCOM, Tel-Aviv, Israel, Mar. 2000, pp. 1323–1332.

[5] S. H. Low and R. Srikant, “A mathematical framework for designing a
low-loss low-delay Internet,” Netw. Spatial Econom., vol. 4, no. 1, pp.
75–102, Mar. 2004.

[6] R. Srikant, The Mathematics of Internet Congestion Control. Cam-
bridge, MA: Birkhauser, 2004.

[7] M. Chiang, S. H. Low, R. A. Calderbank, and J. C. Doyle, “Layering as
optimization decomposition,” Proc. IEEE, Dec. 2006, to be published.

[8] R. Knopp and P. Humblet, “Information capacity and power control
in single-cell multiuser communications,” in Proc. ICC, 1995, pp.
331–335.

[9] P. Bender, P. Black, M. Grob, R. Padovani, N. Sindhushayana, and
A. Viterbi, “CDMA/HDR: A bandwidth-efficient high-speed wireless
data service for nomadic users,” IEEE Commun. Mag., pp. 70–77, Jul.
2000.

[10] S. Borst and P. Whiting, “Dynamic rate control algorithms for HDR
throughput optimization,” in Proc. IEEE INFOCOM, Alaska, Apr.
2001, pp. 976–985.

[11] ——, “The use of diversity antennas in high-speed wireless systems:
Capacity gains, fairness issues, multi-user scheduling,” Bell Laborato-
ries Technical Memorandum, 2001.

[12] X. Liu, E. K. P. Chong, and N. B. Shroff, “Opportunistic transmission
scheduling with resource-sharing constraints in wireless networks,”
IEEE J. Sel. Areas Commun., vol. 19, no. 10, pp. 2053–2064, Oct.
2001.

[13] ——, “A framework for opportunistic scheduling in wireless net-
works,” Comput. Netw., vol. 41, no. 4, pp. 451–474, Mar. 2003.

[14] A. Jalali, R. Padovani, and R. Pankaj, “Data throughput of
CDMA-HDR a high efficiency-high data rate personal communi-
cation wireless system,” in Proc. IEEE Veh. Technol. Conf., 2000, pp.
1854–1858.

[15] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936–1948, Dec. 1992.

[16] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting, and
R. Vijayakumar, “Providing quality of service over a shared wireless
link,” IEEE Commun. Mag., vol. 39, pp. 150–153, Feb. 2001.

[17] S. Shakkottai and A. Stolyar, “Scheduling for multiple flows sharing a
time-varying channel: The exponential rule,” Translations of the AMS,
2001, a volume in memory of F. Karpelevich.

[18] ——, “Scheduling of a shared a time-varying channel: The exponential
rule stability,” in Proc. INFORMS Appl. Prob. Conf., New York, Jul.
2001.

[19] R. Buche and H. J. Kushner, “Control of mobile communication sys-
tems with time-varying channels via stability methods,” IEEE Trans.
Autom. Control, vol. 49, no. 11, pp. 1954–1962, Nov. 2004.

[20] A. L. Stolyar, “Maximizing queueing network utility subject to sta-
bility: Greedy primal-dual algorithm,” Queueing Syst., vol. 50, no. 4,
pp. 401–457, 2005.

[21] S. Borst, “User-level performance of channel-aware scheduling algo-
rithms in wireless data networks,” IEEE/ACM Trans. Netw., vol. 13,
no. 3, pp. 636–647, Jun. 2005.

[22] S. Shakkottai, “Effective capacity and QoS for wireless scheduling,”
preprint, 2004.

[23] L. Ying, R. Srikant, A. Eryilmaz, and G. Dullerud, “A large deviations
analysis of scheduling in wireless networks,” Trans. Inf. Theory, 2005,
Earlier versions of the paper appeared in the IEEE CDC 2004, IEEE
CDC 2005 and IEEE ISIT 2006, submitted for publication.

[24] S. Sarkar and L. Tassiulas, “End-to-end bandwidth guarantees through
fair local spectrum share in wireless ad-hoc networks,” in Proc. IEEE
Conf. Decision and Control, Maui, HI, Dec. 2003, pp. 564–569.

[25] Y. Yi and S. Shakkottai, “Hop-by-hop congestion control over a wire-
less multi-hop network,” in Proc. IEEE INFOCOM, Hong Kong, Mar.
2004, pp. 2548–2558.

[26] Y. Xue, B. Li, and K. Nahrstedt, “Price-based resource allocation in
wireless ad hoc networks,” in Proc. 11th Int. Workshop on Quality
of Service, also Lecture Notes in Computer Science. New York:
Springer-Verlag, vol. 2707, Monterey, CA, Jun. 2003, pp. 79–96.

[27] L. Chen, S. H. Low, and J. C. Doyle, “Joint congestion control and
media access control design for wireless ad hoc networks,” in Proc.
IEEE INFOCOM, Miami, FL, Mar. 2005, pp. 2212–2222.

[28] X. Lin and N. B. Shroff, “Joint rate control and scheduling in multihop
wireless networks,” in Proc. IEEE Conf. Decision and Control, Par-
adise Island, Bahamas, Dec. 2004, pp. 1484–1489.

[29] ——, “The impact of imperfect scheduling on cross-layer rate control
in multihop wireless networks,” in Proc. INFOCOM, Miami, FL, Mar.
2005, pp. 1804–1814.

[30] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless net-
works using queue-length-based scheduling and congestion control,”
in Proc. IEEE INFOCOM, Miami, FL, Mar. 2005, pp. 1794–1803.

[31] A. Eryilmaz and R. Srikant, “Joint congestion control, routing and
MAC for stability and fairness in wireless networks,” IEEE J. Sel. Areas
Commun., vol. 24, no. 8, pp. 1514–1524, Aug. 2006.

[32] I. Paschalidis, W. Lai, and D. Starobinski, “Asymptotically optimal
transmission policies for low-power wireless sensor networks,” in Proc.
IEEE INFOCOM, Miami, FL, Mar. 2005, pp. 2458–2469.

[33] M. J. Neely, E. Modiano, and C. Li, “Fairness and optimal stochastic
control for heterogeneous networks,” in Proc. IEEE INFOCOM,
Miami, FL, Mar. 2005, pp. 1723–1734.

[34] M. Johansson and L. Xiao, “Scheduling, routing and power allocation
for fairness in wireless networks,” in Proc. IEEE Veh. Technol. Conf.
–Spring, Milan, Italy, May 2004, pp. 1355–1360.

[35] T. Bonald and L. Massoulie, “Impact of fairness on Internet perfor-
mance,” in Proc. ACM Sigmetrics, Cambridge, MA, Jun. 2001, pp.
82–91.

[36] J. Mo and J. Walrand, “Fair end-to-end window-based congestion con-
trol,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556–567, Oct. 2000.

[37] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power alloca-
tion and routing for time varying wireless networks,” in Proc. IEEE
INFOCOM, San Francisco, CA, Apr. 2003, pp. 745–755.

[38] R. L. Cruz and A. V. Santhanam, “Optimal routing, link scheduling
and power control in multi-hop wireless networks,” in Proc. IEEE IN-
FOCOM, San Francisco, CA, Apr. 2003, pp. 702–711.

[39] S. Toumpis and A. J. Goldsmith, “Capacity regions for wireless ad hoc
networks,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 736–748,
Jul. 2003.

[40] X. Lin and N. B. Shroff, “The impact of imperfect scheduling on
cross-layer congestion control in wireless networks,” IEEE/ACM
Trans. Netw., vol. 14, no. 2, pp. 302–315, Apr. 2006.

[41] G. Sharma, R. R. Mazumdar, and N. B. Shroff, “Maximum weighted
matching with interference constraints,” in Proc. IEEE Int. Workshop
Foundations and Algorithms For Wireless Networking, Pisa, Italy, Mar.
2006, pp. 70–74.

[42] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Englewood Cliffs, NJ: Prentice-Hall,
1982.



LIN et al.: A TUTORIAL ON CROSS-LAYER OPTIMIZATION IN WIRELESS NETWORKS 1463

[43] L. Xiao, M. Johansson, and S. Boyd, “Simultaneous routing and re-
source allocation via dual decomposition,” in Proc. 4th Asian Control
Conf., Singapore, Sep. 2002, pp. 29–34.

[44] M. Chiang, “Balancing transport and physical layer in multihop wire-
less networks: Jointly optimal congestion and power control,” IEEE J.
Sel. Areas Commun., vol. 23, no. 1, pp. 104–116, Jan. 2005.

[45] ——, “Geometric programming for communication systems,” Founda-
tions and Trends in Communications and Information Theory, vol. 2,
no. 1–2, pp. 1–154, Jul. 2005.

[46] M. Arisoylu, T. Javidi, and R. L. Cruz, “End-to-end and MAC-layer
fair rate assignment in interference limited wireless access networks,”
in Proc. IEEE ICC , Istanbul, Turkey, Jun. 2006, to be published.

[47] X. Wang and K. Kar, “Cross-layer rate control for end-to-end propor-
tional fairness in wireless networks with random access,” in Proc. ACM
Mobihoc, Urbana-Champaign, IL, May 2005, pp. 157–168.

[48] J. W. Lee, M. Chiang, and R. A. Calderbank, “Jointly optimal con-
gestion and contention control in wireless ad hoc networks,” IEEE
Commun. Lett., vol. 10, no. 3, pp. 216–218, Mar. 2006.

[49] J. Zhang and D. Zheng, “A stochastic primal-dual algorithm for joint
flow control and MAC design in multi-hop wireless networks,” in Proc.
Conf. Inf. Sci. Syst., Princeton, NJ, Mar. 2006.

[50] L. Bui, A. Eryilmaz, R. Srikant, and X. Wu, “Joint congestion control
and distributed scheduling in multihop wireless networks with a node-
exclusive interference model,” in Proc. IEEE INFOCOM, 2006.

[51] E. Leonardi, M. Mellia, F. Neri, and M. A. Marsan, “On the stability of
input-queued switches with speed-up,” IEEE/ACM Trans. Netw., vol.
9, no. 1, pp. 104–118, Feb. 2001.

[52] X. Wu and R. Srikant, “Regulated maximal matching: A distributed
scheduling algorithm for multi-hop wireless networks with node-exclu-
sive spectrum sharing,” in Proc. IEEE Conf. Decision Control, 2005,
pp. 5342–5347.

[53] T. Weller and B. Hajek, “Scheduling non-uniform traffic in a packet-
switching system with small propagation delay,” IEEE/ACM Trans.
Netw., pp. 813–823, Dec. 1997.

[54] J. Dai and B. Prabhakar, “The throughput of data switches with
and without speedup,” in Proc. IEEE INFOCOM, 2000, pp.
556–564.

[55] X. Wu, R. Srikant, and J. R. Perkins, “Queue-length stability of max-
imal greedy schedules in wireless network,” in Proc. Inf. Theory Appl.
Inaugural Workshop, Feb. 2006, Univ. California, San Diego.

[56] P. Chaporkar, K. Kar, and S. Sarkar, “Achieving queue length sta-
bility through maximal scheduling in wireless networks,” in Proc.
Inf. Theory Appl. Inaugural Workshop, Feb. 2006, Univ. California,
San Diego.

[57] ——, “Throughput guarantees in maximal scheduling in wireless
networks,” in Proc. 43rd Annu. Allerton Conf. Commun., Control,
Comput., Monticello, IL, Sep. 2005.

[58] X. Lin and S. Rasool, “Constant-time distributed scheduling policies
for ad hoc wireless networks,” IEEE CDC 2006. [Online]. Available:
http://min.ecn.purdue.edu/~linx/papers.html, submitted for publica-
tion

[59] X. Lin, N. Shroff, and R. Srikant, “On the connection-level stability
of congestion-controlled communication networks,” IEEE Trans. Inf.
Theory, 2006, submitted for publication.

[60] P. R. Kumar and T. I. Seidman, “Dynamic instabilities and stabilization
methods in distributed real-time scheduling of manufacturing systems,”
IEEE Trans. Autom. Control, pp. 289–298, Mar. 1990.

[61] A. Rybko and A. Stolyar, “Ergodicity of stochastic processes de-
scribing the operation of open queueing networks,” Problems of In-
formation Transmission, vol. 28, pp. 199–220, 1992, translated from
Problemy Peredachi Informatsii, vol. 28, no. 3, pp. 3–26, 1992.

[62] A. Eryilmaz, E. Modiano, and A. Ozdaglar, “Distributed control for
throughput-optimality and fairness in wireless networks,” preprint,
2006.

[63] Y. Yi, G. de Veciana, and S. Shakkottai, “Learning contention pat-
terns and adapting to load/topology changes in a MAC scheduling al-
gorithm,” preprint, 2006.

[64] J.-W. Lee, R. R. Mazumdar, and N. B. Shroff, “Downlink power al-
location for multi-class CDMA wireless networks,” in Proc. IEEE IN-
FOCOM, 2002, vol. 3, pp. 1480–1489.

[65] ——, “Opportunistic power scheduling for multi-server wireless
systems with minimum performance constraints,” in Proc. IEEE
INFOCOM, Hong Kong, China, 2004, pp. 1067–1077.

[66] M. Chiang, S. Zhang, and P. Hande, “Distributed rate allocation for
inelastic flows: Optimization frameworks, optimality conditions, and
optimal algorithms,” in Proc. IEEE INFOCOM, Miami, FL, Mar. 2005,
pp. 2679–2690.

Xiaojun Lin (S’02–M’05) received the B.S. degree
from Zhongshan University, Guangzhou, China, in
1994, and the M.S. and Ph.D. degrees from Purdue
University, West Lafayette, IN, in 2000 and 2005,
respectively.

He is currently an Assistant Professor of Electrical
and Computer Engineering at Purdue University. His
research interests are resource allocation, optimiza-
tion, network pricing, routing, congestion control,
network as a large system, cross-layer design in
wireless networks, and mobile ad hoc and sensor

networks.
Dr. Lin received the 2005 Best Paper of the Year Award in the Journal of

Communications and Networks. His paper was also one of two runner-up papers
for the Best Paper Award at the IEEE INFOCOM 2005.

Ness B. Shroff (S’91–M’93–SM’01) received the
Ph.D. degree from Columbia University, New York,
in 1994.

He joined Purdue University, West Lafayette,
IN, in 1994, where he is currently Professor of
Electrical and Computer Engineering and director
of a university-wide center on wireless systems
and applications. His research is funded by var-
ious companies such as Motorola, Intel, Hewlett
Packard, Nortel, AT&T, BAE systems, and L. G.
Electronics; and government agencies such as the

National Science Foundation (NSF), Defense Advanced Research Projects
Agency (DARPA), Indiana Department of Transportation, and the Indiana 21st
Century Fund. His research interests span the areas of wireless and wireline
communication networks. He is especially interested in fundamental problems
in the design, performance, control, and security of these networks.

Dr. Shroff received the IEEE INFOCOM 2006 Best Paper Award, the 2005
Best Paper of the Year Award for the Journal of Communications and Net-
working, the 2003 Best Paper of the Year Award for Computer Networks, and
the NSF CAREER award in 1996 (his IEEE INFOCOM 2005 paper was also se-
lected as one of two runner-up papers for the best paper award). He is an Editor
for IEEE/ACM TRANSACTIONS ON NETWORKING and the Computer Networks
Journal, and past Editor of the IEEE COMMUNICATIONS LETTERS. He has served
on the technical and executive committees of several major conferences and
workshops. He was the Technical Program Co-Chair of IEEE INFOCOM’03,
the premier conference in communication networking. He was also the Con-
ference Chair of the 14th Annual IEEE Computer Communications Workshop
(CCW’99), the Program Co-Chair for the Symposium on High-Speed Networks,
GLOBECOM 2001, and the Panel Co-Chair for ACM MobiCom’02. He was
also a co-organizer of the NSF Workshop on Fundamental Research in Net-
working, Arlie House, VA, in 2003.

R. Srikant (S’90–M’91–SM’01–F’06) received
the B.Tech. degree from the Indian Institute of
Technology, Madras, in 1985, and the M.S. and
Ph.D. degrees from the University of Illinois at
Urbana–Champaign, Urbana, in 1988 and 1991,
respectively, all in electrical engineering.

He was a Member of Technical Staff at AT&T Bell
Laboratories from 1991 to 1995. He is currently with
the University of Illinois at Urbana–Champaign,
where he is a Professor in the Department of Elec-
trical and Computer Engineering, and a Research

Professor in the Coordinated Science Laboratory. His research interests include
communication networks, stochastic processes, queueing theory, information
theory, and game theory.

Dr. Srikant was an Associate Editor of Automatica and the IEEE
TRANSACTIONS ON AUTOMATIC CONTROL, and is currently an Associate
Editor of the IEEE/ACM TRANSACTIONS ON NETWORKING. He has also served
on the Editorial Boards of special issues of the IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATIONS and the IEEE TRANSACTIONS ON INFORMATION

THEORY. He was the Chair of the 2002 IEEE Computer Communications
Workshop, Santa Fe, NM, and will be a Program Co-Chair of IEEE INFOCOM
2007.


